Compositional and functional stability of aerobic methane consuming communities in drained and rewetted peat meadows.

نویسندگان

  • Sascha Krause
  • Pascal A Niklaus
  • Sara Badwan Morcillo
  • Marion Meima Franke
  • Claudia Lüke
  • Andreas Reim
  • Paul L E Bodelier
چکیده

The restoration of peatlands is an important strategy to counteract subsidence and loss of biodiversity. However, responses of important microbial soil processes are poorly understood. We assessed functioning, diversity and spatial organization of methanotrophic communities in drained and rewetted peat meadows with different water table management and agricultural practice. Results show that the methanotrophic diversity was similar between drained and rewetted sites with a remarkable dominance of the genus Methylocystis. Enzyme kinetics depicted no major differences, indicating flexibility in the methane (CH4) concentrations that can be used by the methanotrophic community. Short-term flooding led to temporary elevated CH4 emission but to neither major changes in abundances of methane-oxidizing bacteria (MOB) nor major changes in CH4 consumption kinetics in drained agriculturally used peat meadows. Radiolabeling and autoradiographic imaging of intact soil cores revealed a markedly different spatial arrangement of the CH4 consuming zone in cores exposed to near-atmospheric and elevated CH4. The observed spatial patterns of CH4 consumption in drained peat meadows with and without short-term flooding highlighted the spatial complexity and responsiveness of the CH4 consuming zone upon environmental change. The methanotrophic microbial community is not generally altered and harbors MOB that can cover a large range of CH4 concentrations offered due to water-table fluctuations, effectively mitigating CH4 emissions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photosynthetic traits of Sphagnum and feather moss species in undrained, drained and rewetted boreal spruce swamp forests

In restored peatlands, recovery of carbon assimilation by peat-forming plants is a prerequisite for the recovery of ecosystem functioning. Restoration by rewetting may affect moss photosynthesis and respiration directly and/or through species successional turnover. To quantify the importance of the direct effects and the effects mediated by species change in boreal spruce swamp forests, we used...

متن کامل

Patterns in Wetland Microbial Community Composition and Functional Gene Repertoire Associated with Methane Emissions

UNLABELLED Wetland restoration on peat islands previously drained for agriculture has potential to reverse land subsidence and sequester atmospheric carbon dioxide as peat accretes. However, the emission of methane could potentially offset the greenhouse gas benefits of captured carbon. As microbial communities play a key role in governing wetland greenhouse gas fluxes, we are interested in how...

متن کامل

Detection of methanogenic Archaea in peat: comparison of PCR primers targeting the mcrA gene.

Methanogens (domain Archaea) have a unique role in the carbon cycle as producers of the greenhouse gas methane (CH(4)). Methyl-coenzyme M reductase (MCR) is a vital enzyme in CH(4) production, and the mcrA gene coding for a subunit of MCR has been employed as a specific marker for the detection and differentiation of methanogen communities. A critical step in assessing environmental mcrA divers...

متن کامل

Methane emissions in drained peat agro-ecosystems

Spatial and temporal variation of methane emissions in drained eutrophic peat agro-ecosystems: drainage ditches as emission hotspots A. P. Schrier-Uijl, E. M. Veenendaal, P. A. Leffelaar, J. C. van Huissteden, and F. Berendse Department of Nature Conservation and Plant Ecology, Wageningen University, Droevendaalse steeg 3a, 6708 PD Wageningen, The Netherlands Department of Plant Production Syst...

متن کامل

Characteristics of dissolved organic matter following 20years of peatland restoration.

The changes in the amounts and composition of dissolved organic matter (DOM) following long-term peat restoration are unknown, although this fraction of soil organic matter affects many processes in such ecosystems. We addressed this lack of knowledge by investigating a peatland in south-west Germany that was partly rewetted 20 years ago. A successfully restored site and a moderately drained si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEMS microbiology ecology

دوره 91 11  شماره 

صفحات  -

تاریخ انتشار 2015